Learn More
We studied the structural properties of (Ge+SiO2)/SiO2 multilayer films, especially the influence of the deposition temperature and the parameters of subsequent annealing on the formation and spatial correlation of Ge quantum dots in an amorphous silica matrix. We showed that in-layer and inter-layer spatial correlations of the formed Ge quantum dots(More)
The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots.(More)
In this article, we present an investigation of (Ge + SiO2)/SiO2 multilayers deposited by magnetron sputtering and subsequently annealed at different temperatures. The structural properties were investigated by transmission electron microscopy, grazing incidence small angles X-ray scattering, Rutherford backscattering spectrometry, Raman, and X-ray(More)
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation(More)
As multiword expressions (MWEs) exhibit a range of idiosyncrasies, their automatic detection warrants the use of many different features. Tsvetkov and Wintner (2014) proposed a Bayesian network model that combines linguistically motivated features and also models their interactions. In this paper, we extend their model with new features and apply it to(More)
In this work, the influence of air pressure during the annealing of Ge quantum dot (QD) lattices embedded in an amorphous Al(2)O(3) matrix on the structural, morphological and compositional properties of the film is studied. The formation of a regularly ordered void lattice after performing a thermal annealing process is explored. Our results show that both(More)
Nanostructuring of surfaces and two-dimensional materials using swift heavy ions offers some unique possibilities owing to the deposition of a large amount of energy localized within a nanoscale volume surrounding the ion trajectory. To fully exploit this feature, the morphology of nanostructures formed after ion impact has to be known in detail. In the(More)
We theoretically interpret the thermal behaviour of the average radius versus substrate temperature of regular quantum dot/nanocluster arrays that form from sputtering semiconductor/metal atoms with oxide molecules. 
 The analysis relies on a continuum theory for amorphous films with given surface quantities, perturbed by a nanoparticle lattice.
 An(More)
  • 1