Maik S. Sommer

Learn More
Phototrophic chromalveolates possess plastids surrounded by either 3 or 4 membranes, revealing their secondary endosymbiotic origin from an engulfed eukaryotic alga. In cryptophytes, a member of the chromalveolates, the organelle is embedded within a designated region of the host's rough endoplasmic reticulum (RER). Its eukaryotic compartments other than(More)
Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses(More)
The complex plastid of the cryptophyte Guillardia theta and of the diatom Phaeodactylum tricornutum can both be traced back to an engulfed eukaryotic red alga. The eukaryotic origin of these plastids is most obvious in cryptophytes, where the organelle still possesses a remnant nucleus, the nucleomorph. The nucleomorph itself is embedded in the periplastid(More)
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment.(More)
The majority of outer membrane proteins (OMPs) from gram-negative bacteria and many of mitochondria and chloroplasts are β-barrels. Insertion and assembly of these proteins are catalyzed by the Omp85 protein family in a seemingly conserved process. All members of this family exhibit a characteristic N-terminal polypeptide-transport-associated (POTRA) and a(More)
Plastids rely on protein supply by their host cells. In plastids surrounded by two membranes (primary plastids) targeting of these proteins is facilitated by an N-terminal targeting signal, the transit peptide. In secondary plastids (surrounded by three or four membranes), transit peptide-like regions are an essential part of a bipartite topogenic signal(More)
Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We(More)
Protein transport, especially into different cellular compartments, is a highly coordinated and regulated process. The molecular machineries which carry out these transport processes are highly complex in structure, function, and regulation. In the case of chloroplasts, thousands of protein molecules have been estimated to be transported across the(More)
The import of cytosolically synthesized precursor proteins into chloroplasts by the translocon at the outer envelope membrane of chloroplasts (TOC) is crucial for organelle function. The recognition of precursor proteins at the chloroplast surface precedes translocation and involves the membrane-inserted receptor subunits Toc34 and Toc159. A third receptor,(More)
Proteins of the Omp85 family are conserved in all kingdoms of life. They mediate protein transport across or protein insertion into membranes and reside in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. Omp85 proteins contain a C-terminal transmembrane beta-barrel and a soluble N terminus with a varying number of(More)