Learn More
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity.(More)
Stable transfectants were selected from human astrocytoma cells (U373) after transfection with recombinant expression vectors carrying the human cytomegalovirus (HCMV) glycoprotein B (gB; gpUL55) gene with alternative deletions of hydrophobic domain segment 1 (hd1) or segment 2 (hd2) of the carboxy-terminal potential bipartite membrane anchor domain.(More)
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs(More)
Plant-pathogenic xanthomonads have evolved TAL effectors (TALEs) as activators of plant genes to manipulate the host to their benefit. Cracking the code of TALE DNA-binding specificity revealed a simple one-to-one relationship between protein domains and DNA bases bound. This now allows the simple design of any desired DNA-binding specificity. Accordingly,(More)
To define structural elements involved in translocation of human cytomegalovirus (HCMV) glycoprotein B (gB) to the inner nuclear membrane (INM) compartment, mutagenized gB derivatives with deletions of the potential membrane anchor domains or of portions of the cytoplasmic tail were stably expressed in human astrocytoma cells. Subcellular localization(More)
  • 1