Maik Pietzner

Learn More
Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a(More)
The susceptibility for various diseases as well as the response to treatments differ considerably between men and women. As a basis for a gender-specific personalized healthcare, an extensive characterization of the molecular differences between the two genders is required. In the present study, we conducted a large-scale metabolomics analysis of 507(More)
Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific(More)
Thyroid hormones (THs) affect virtually all tissues and are essential for maintaining energy metabolism, cellular growth and development. Their release depends on a complex feedback regulation including thyrotropin (TSH), offering a unique individual set point compared with a broad interindividual variance. Keeping in mind that crucial role for intermediary(More)
  • 1