Mai Takaki

Learn More
Research on the role of serotonin (5-hydroxytryptamine, 5-HT) in the function of the enteric nervous system has been impeded by the lack of specific inhibitors of the enteric neural actions of 5-HT. Saturable, reversible, high affinity enteric binding sites for 3H-5-HT have recently been characterized and radioautographically located. Affinity for the(More)
Intracellular recordings showed that administration of pulses of tryptamine mimicked one of the actions of serotonin (a slow depolarization associated with an increased input resistance) on type II/AH neurons of the myenteric plexus. After superfusion at high concentration tryptamine initially acted like serotonin, but then blocked the action of serotonin(More)
Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have(More)
An enteric neural receptor for serotonin (5-HT) has been characterized. This receptor was assayed, using 3H-5-HT as a radioligand, by rapid filtration of isolated enteric membranes and by radioautography. In addition, intracellular recordings were made from ganglion cells of the myenteric plexus. High affinity, saturable, reversible, and specific binding of(More)
Experiments were done to test the hypothesis that individual ganglia of the myenteric plexus of the guinea pig small intestine are heterogeneous with respect to the location of the neurons that provide terminals to them. The myenteric plexus, attached to the longitudinal layer of smooth muscle, was maintained in vitro. Individual ganglia were injected with(More)
  • 1