Learn More
Mechanical folding trajectories for polyproteins starting from initially stretched conformations generated by single-molecule atomic force microscopy experiments [Fernandez, J. M. & Li, H. (2004) Science 303, 1674-1678] show that refolding, monitored by the end-to-end distance, occurs in distinct multiple stages. To clarify the molecular nature of folding(More)
Using exhaustive Monte Carlo simulations we study the kinetics and mechanism of fibril formation using lattice models as a function of temperature (T) and the number of chains (M). While these models are, at best, caricatures of peptides, we show that a number of generic features thought to govern fibril assembly are captured by the toy model. The monomer,(More)
Using lattice models we explore the factors that determine the tendencies of polypeptide chains to aggregate by exhaustively sampling the sequence and conformational space. The morphologies of the fibril-like structures and the time scales (τ(fib)) for their formation depend on a balance between hydrophobic and Coulomb interactions. The extent of population(More)
Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Abeta(16-22))(n) by adding a monomer to a preformed (Abeta(16-22))(n-1) (n = 4-6)(More)
The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds(More)
BACKGROUND Aggregation of amyloid-beta (Aβ) has been proposed as the main cause of Alzheimer's disease (AD). Vitamin K deficiency has been linked to the pathogenesis of AD. Therefore, 15 synthesized vitamin K3 (VK3) analogues were studied for their anti-amyloidogenic activity. METHODS Biological and spectroscopic assays were used to characterize the(More)
Finite size effects on the cooperative thermal denaturation of proteins are considered. A dimensionless measure of cooperativity, Omegac, scales as Nzeta, where N is the number of amino acids. Surprisingly, we find that zeta is universal with zeta=1+gamma, where the exponent gamma characterizes the divergence of the susceptibility for a self-avoiding walk.(More)
The free energy landscape and the folding mechanism of the C-terminal beta-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin(More)
The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔG(bind) of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔG(bind) is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and(More)
The aim of this work is to investigate the effects of molecular mechanics force fields on amyloid peptide assembly. To this end, we performed extensive replica exchange molecular dynamics (REMD) simulations on the monomer, dimer and trimer of the seven-residue fragment of the Alzheimer's amyloid-β peptide, Aβ(16-22), using the AMBER99, GROMOS96 and OPLS(More)