Learn More
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly(More)
—Data coding as a building block of several image processing algorithms has been received great attention recently. Indeed, the importance of the locality assumption in coding approaches is studied in numerous works and several methods are proposed based on this concept. We probe this assumption and claim that taking the similarity between a data point and(More)
Feature coding has received great attention in recent years as a building block of many image processing algorithms. In particular, the importance of the locality assumption in coding approaches has been studied in many previous works. We review this assumption and claim that using the similarity of data points to a more global set of anchor points does not(More)
— An adaptive method to perform dynamic voltage and frequency scheduling (DVFS) for minimizing the energy consumption of microprocessor chips is presented. Instead of using a fixed update interval, the proposed DVFS system makes use of adaptive update intervals for optimal frequency and voltage scheduling. The optimization enables the system to rapidly(More)
The growing amount of data available in modern-day datasets makes the need to efficiently search and retrieve information. To make large-scale search feasible, Distance Estimation and Subset Indexing are the main approaches. Although binary coding has been popular for implementing both techniques, n-ary coding (known as Product Quantization) is also very(More)
  • 1