Learn More
We investigate the supercurrent through a quantum dot for the whole range of couplings using the numerical renormalization group method. We find that the Josephson current switches abruptly from a ␲-to a 0-phase as the coupling increases. At intermediate couplings the total spin in the ground state depends on the phase difference between the two(More)
Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated(More)
We report nonequilibrium transport measurements of gate-tunable Andreev bound states in a carbon nanotube quantum dot coupled to two superconducting leads. In particular, we observe clear features of two types of Kondo ridges, which can be understood in terms of the interplay between the Kondo effect and superconductivity. In the first type (type I), the(More)
Core/shell heterostructure nanowires are one of the most interesting mesoscopic systems potentially suitable for the study of quantum interference phenomena. Here, we report on experimental observations of both the Aharonov-Bohm (h/e) and the Altshuler-Aronov-Spivak (h/2e) oscillations in radial core/shell (In2O3/InOx) heterostructure nanowires. For a long(More)
We report on the fabrication and measurements of a superconducting junction of a single-crystalline Au nanowire, connected to Al electrodes. The current-voltage characteristic curve shows a clear supercurrent branch below the superconducting transition temperature of Al and quantized voltage plateaus on application of microwave radiation, as expected from(More)
The proportion of packed malware has been growing rapidly and now comprises more than 80 % of all existing malware. In this paper, we propose a method for classifying the packing algorithms of given unknown packed executables, regardless of whether they are malware or benign programs. First, we scale the entropy values of a given executable and convert the(More)
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction(More)
We fabricated a quantum-dot device consisting of an individual double-wall carbon nanotube and studied its electrical transport properties at low temperatures. In the negative bias region, the gate modulation curve exhibited quasiperiodic current oscillations, attributed to the Coulomb blockade of single-electron tunneling. We observed both four- and(More)
We study quantum Ising spins placed on small-world networks. A simple model is considered in which the coupling between any given pair of spins is a nonzero constant if they are linked in the small-world network, and zero otherwise. By applying a transverse magnetic field, we have investigated the effect of quantum fluctuations. Our numerical analysis shows(More)
– This paper is devoted to an analysis of the experiment by Nakamura et al. (Nature 398, 786 (1999)) on the quantum state control in Josephson junctions devices. By considering the relevant processes involved in the detection of the charge state of the box and a realistic description of the gate pulse we are able to analyze some aspects of the experiment(More)