Learn More
Graphlet frequency distribution (GFD) has recently become popular for characterizing large networks. However, the computation of GFD for a network requires the exact count of embedded graphlets in that network, which is a computationally expensive task. As a result, it is practically infeasible to compute the GFD for even a moderately large network. In this(More)
Graphlet frequency distribution (GFD) has recently become popular for characterizing large networks. However, the computation of GFD for a network requires the exact count of embedded graphlets in that network, which is a computationally expensive task. As a result, it is practically infeasible to compute the GFD for even a moderately large network. In this(More)
Traditional data mining mechanisms with their robustly defined classification techniques have certain limitations to express to what extent the class labels of the test data hold. This problem leads to the fact that a false positive or false negative data point has no quantitative value to express to what degree it is false/true. This situation becomes much(More)
As users' preferences shift continuously, recommendation system has to learn quickly from them. It is an interesting online learning problem as recommender does not have any prior knowledge about the distribution of items over the users. In this work, we generate a small recommendation set from a large number of items, with an intention that at least one of(More)
  • 1