Mahdi Hejazi

Learn More
The branched polypeptide multi-L-arginyl-poly-L-aspartic acid, also called cyanophycin, is a water-insoluble reserve material of cyanobacteria. The polymer is degraded by a specific hydrolytic enzyme called cyanophycinase. By heterologous expression in Escherichia coli, a gene encoding cyanophycinase has been identified in the sequenced genome of(More)
Recombinant plant-type asparaginases from the cyanobacteria Synechocystis sp. PCC (Pasteur culture collection) 6803 and Anabaena sp. PCC 7120, from Escherichia coli and from the plant Arabidopsis thaliana were expressed in E. coli with either an N-terminal or a C-terminal His tag, and purified. Although each of the four enzymes is encoded by a single gene,(More)
The small GTPase Gsp1p of Saccharomyces cerevisiae and its homologue Ran play essential roles in several nuclear processes, such as cell-cycle progression, nuclear organization and nucleocytoplasmic traffic of RNA and proteins. Gsp1p/Ran is an abundant nuclear protein that interacts with different cytoplasmic and nuclear factors. Several of the previously(More)
The crystal structure of the Escherichia coli enzyme (EcAIII) with isoaspartyl dipeptidase and L-asparaginase activity has been solved and refined to a resolution of 1.65 angstroms, with crystallographic R-factor and Rfree values of 0.178 and 0.209, respectively. EcAIII belongs to the family of N-terminal hydrolases. The amino-acid sequence of EcAIII is(More)
The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein–detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show(More)
One major vital element of the oxygenic photosynthesis is photosystem I (PSI). We report on the construction of graphene-based nanohybrid light-harvesting architectures consisting of PSI supercomplexes adsorbed onto π-system-modified graphene interfaces. The light-driven nanophotobioelectrochemical architectures have been designed on a modified carbon(More)
The engineering of renewable and sustainable protein-based light-to-energy converting systems is an emerging field of research. Here, we report on the development of supramolecular light-harvesting electrodes, consisting of the redox protein cytochrome c working as a molecular scaffold as well as a conductive wiring network and photosystem I as a(More)
  • 1