Mahdi Doostmohammadi

Learn More
We consider a mixed integer set which generalizes two well-known sets: the single node fixed-charge network set and the single arc design set. Such set arises as a relaxation of feasible sets of general mixed integer problems such as lot-sizing and network design problems. We derive several families of valid inequalities that, in particular, generalize the(More)
In this paper, we investigate the two-period subproblems proposed by Akartunalı et al. (2014) for big-bucket lot-sizing problems, which have shown a great potential for obtaining strong bounds for these problems. In particular, we study the polyhedral structure of the mixed integer sets related to two relaxations of these subproblems for the special case of(More)
  • 1