Learn More
Highly porous N-doped activated carbon monoliths (ACMs) are fabricated by carbonization and physical activation of mesoporous polyacrylonitrile (PAN) monoliths in the presence of CO(2). The monoliths exhibit exceptionally high CO(2) uptake; 5.14 mmol g(-1) at ambient pressure and temperature and 11.51 mmol g(-1) at ambient pressure and 273 K.
Highly ordered 3D-hexagonal mesoporous silica HMS-3 and its vinyl- and 3-chloropropyl-functionalized analogues HMS-4 and -5, respectively, are synthesized under strongly alkaline conditions at 277 K. Tetraethyl orthosilicate, vinyltrimethoxysilane, and 3-chloropropyltrimethoxysilane are used as silica sources, and cetyltrimethylammonium bromide as the(More)
Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the(More)
Iron containing porous organic polymers (Fe-POPs) have been synthesized by a facile one-pot bottom-up approach to porphyrin chemistry by an extended aromatic substitution reaction between pyrrole and aromatic dialdehydes in the presence of small amount of Fe(III). The Fe-POPs possess very high BET surface area, large micropores and showed excellent CO(2)(More)
Post-synthesis modification of SBA-15 has been carried out to design highly ordered acid functionalized hybrid mesoporous organosilica, AFS-1. This material has been used as an efficient heterogeneous organocatalyst for the syntheses of xanthenes under mild conditions in the absence of any other metal co-catalyst.
Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a(More)
Mesoporous silica functionalized with a 2-hydroxy-naphthyl moiety has been synthesized and characterized by standard techniques like powder X-ray diffraction, N2 adsorption/desorption studies, transmission electron microscopy and spectral studies like FT-IR, UV-visible, fluorescence and 13C and 29Si solid state NMR. The functionalized silica material showed(More)
Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to(More)
A new porous organic-inorganic hybrid tin phosphonate material has been synthesized hydrothermally, which shows a Brunauer-Emmett-Teller surface area of 723 m(2) g(-1) and it adsorbs 4.8 mmol g(-1) CO(2) at 273 K and 5 bar pressure. The material also shows remarkable catalytic activity in one-pot liquid phase oxidation of cyclohexanone to adipic acid under(More)