Mahalingam Balasubramanian

Learn More
We have demonstrated near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for simultaneously probing the surface chemistry, surface molecular orientation, degree of order, and electronic structure of carbon nanotubes and related nanomaterials. Specifically, we employ NEXAFS in the study of(More)
Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li(x)Ni(2-4x/3)Sb(x/3)O2 (x = 1.00-1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies reveal a complex nanostructure pattern of Li-Sb and Ni-Sb ordering where the interface between these domains(More)
A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides † de Recent successes with disordered Li-excess materials and applications of percolation theory have highlighted cation-disordered oxides as high capacity and energy density cathode materials. In this work, we present a new class of high capacity(More)
Tracking thermally induced reactions has always been challenging for electrode materials of electrochemical battery systems. Traditionally, a variety of calorimetric techniques and in situ XRD at elevated temperatures has been used to evaluate the thermal stability of electrode materials. These techniques are capable of providing variations in heat(More)
  • 1