Magnus Svensson

Learn More
The battery cells are an important part of electric and hybrid vehicles and their deterioration due to aging directly affects the life cycle and performance of the whole battery system. Therefore an early aging detection of the battery cell is an important task and its correct solution could significantly improve the whole vehicle performance. This paper(More)
— Creating fault detection software for complex mechatronic systems (e.g. modern vehicles) is costly both in terms of engineer time and hardware resources. With the availability of wireless communication in vehicles, information can be transmitted from vehicles to allow historical or fleet comparisons. New networked applications can be created that, e.g.,(More)
Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between(More)
An approach is proposed for automatic fault detection in a population of mechatronic systems. The idea is to employ self-organizing algorithms that produce low-dimensional representations of sensor and actuator values on the vehicles, and compare these low-dimensional representations among the systems. If a representation in one vehicle is found to deviate(More)
With the introduction of low-cost wireless communication many new applications have been made possible; applications where systems can collaboratively learn and get wiser without human supervision. One potential application is automated monitoring for fault isolation in mobile mechatronic systems such as commercial vehicles. The paper proposes an agent(More)
Performance evaluation and anomaly detection in complex systems are time consuming tasks based on analyzing, similarity analysis and classification of many different data sets from real operations. This paper presents an original computational technology for unsupervised incremental classification of large data sets by using a specially introduced(More)
EXTENDED ABSTRACT As researchers we are often faced with the difficult and demanding task of preparing models, and their computer implementations, for decision making, or, more recently, for integrated assessment. Such assessment often involves large scale problems, where the decisions to be made can deeply affect the environment, the social context and the(More)