Learn More
The use of Genetic Algorithms (GAs) and other evolutionary optimization methods to design fuzzy rules for systems modeling and data classification have received much attention in recent literature. Authors have focused on various aspects of these randomized techniques, and a whole scale of algorithms have been proposed. We comment on some recent work and(More)
A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm. The class labels are not used in this step. Then, a fuzzy relation between the clusters and the class identifiers is computed. This approach allows the number(More)
The automatic design of fuzzy rule-based classification systems based on labeled data is considered. It is recognized that both classification performance and interpretability are of major importance and effort is made to keep the resulting rule bases small and comprehensible. For this purpose, an iterative approach for developing fuzzy classifiers is(More)
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of(More)
— This article is a reaction to recent publications on rule-based modeling using fuzzy set theory and fuzzy logic. The interest in fuzzy systems has recently shifted from the seminal ideas about complexity reduction toward data-driven construction of fuzzy systems. Many algorithms have been introduced that aim at numerical approximation of functions by(More)
—Two extensions to the objective function-based fuzzy clustering are proposed. First, the (point) prototypes are extended to hypervolumes, whose size can be fixed or can be determined automatically from the data being clustered. It is shown that clustering with hypervolume prototypes can be formulated as the minimization of an objective function. Second, a(More)