Magne Olufsen

Learn More
MD simulations and continuum electrostatics calculations have been used to study the observed differences in thermostability of cold- and warm-active uracil DNA glycosylase (UDG). The present study focuses on the role of ion pairs and how they affect the thermal stability of the two enzymes. Analysis of the MD generated structural ensembles show that cod(More)
Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod(More)
The role of the primary binding residue (P1) in complexes between three different subtilases (subtilisin Carlsberg, thermitase and proteinase K) and their canonical protein inhibitor eglin c have been studied by free energy calculations. Based on the crystal structures of eglin c in complex with subtilisin Carlsberg and thermitase, and a homology model of(More)
Adaptation to both high and low temperatures requires proteins with special properties. While organisms living at or close to the boiling point of water need to have proteins with increased stability, other properties are required at temperatures close to the freezing point of water. Indeed, it has been shown that enzymes adapted to cold environments are(More)
Uracil DNA glycosylase (UDG) is a DNA repair enzyme in the base excision repair pathway and removes uracil from the DNA strand. Atlantic cod UDG (cUDG), which is a cold-adapted enzyme, has been found to be up to 10 times more catalytically active in the temperature range 15-37 degrees C as compared with the warm-active human counterpart. The increased(More)
Uracil DNA glycosylase (UDG) is a DNA repair enzyme involved in the base excision repair (BER) pathway, removing misincorporated uracil from the DNA strand. The native and mutant forms of Atlantic cod and human UDG have previously been characterized in terms of kinetic and thermodynamic properties as well as the determination of several crystal structures.(More)
Cold-adapted enzymes are characterised by an increased catalytic efficiency and reduced temperature stability compared to their mesophilic counterparts. Lately, it has been suggested that an optimisation of the electrostatic surface potential is a strategy for cold adaptation for some enzymes. A visualisation of the electrostatic surface potential of(More)
Crystal structures of P1 Gly, Val, Leu and Phe bovine pancreatic trypsin inhibitor (BPTI) variants in complex with two serine proteinases, bovine trypsin and chymotrypsin, have been determined. The association constants for the four mutants with the two enzymes show that the enlargement of the volume of the P1 residue is accompanied by an increase of the(More)
  • 1