Magdolna Szántó

Learn More
We have recently isolated a biofilm-producing strain (C208) of Rhodococcus ruber that degraded polyethylene at a rate of 0.86% per week (r 2=0.98). Strain C208 adheres to polyethylene immediately upon exposure to the polyolefin. This initial biofilm differentiates (in a stepwise process that lasts about 20 h) into cell-aggregation-forming microcolonies.(More)
SIRT1 is a NAD(+)-dependent enzyme that affects metabolism by deacetylating key transcriptional regulators of energy expenditure. Here, we tested whether deletion of PARP-2, an alternative NAD(+)-consuming enzyme, impacts on NAD(+) bioavailability and SIRT1 activity. Our results indicate that PARP-2 deficiency increases SIRT1 activity in cultured myotubes.(More)
Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5–15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection,(More)
Glycogen phosphorylase (GP) catalyzes the breakdown of glycogen and largely contributes to hepatic glucose production making GP inhibition an attractive target to modulate glucose levels in diabetes. Hereby we present the metabolic effects of a novel, potent, glucose-based GP inhibitor (KB228) tested in vitro and in vivo under normoglycemic and diabetic(More)
Poly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme. However, recent investigations have attributed unique roles to PARP-2 in metabolic regulation in the liver. We assessed changes in hepatic lipid homeostasis upon the deletion of PARP-2 and found that cholesterol levels were higher in PARP-2(-/-) mice as compared to wild-type(More)
AIMS Doxorubicin (DOX) is widely used in cytostatic treatments, although it may cause cardiovascular dysfunction as a side effect. DOX treatment leads to enhanced free radical production that in turn causes DNA strand breakage culminating in poly(ADP-ribose) polymerase (PARP) activation and mitochondrial and cellular dysfunction. DNA nicks can activate(More)
Contact hypersensitivity (CHS) reaction is a form of delayed-type of hypersensitivity caused by contact allergens such as oxazolone (OXA). In previous studies it has been shown that poly(ADP-ribose) polymerase (PARP) inhibition reduces the extent of inflammation in CHS. We aimed to shed light on the molecular events causing the protective effect of PARP(More)
Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of(More)
Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces(More)
Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin(More)