Magdalini Moutaftsi

Learn More
The value of predictive algorithms for identifying CD8+ T (T(CD8+))-cell epitopes has not been adequately tested experimentally. Here we demonstrate that conventional bioinformatic methods predict the vast majority of T(CD8+)-cell epitopes derived from vaccinia virus WR strain (VACV-WR) in the H-2(b) mouse model. This approach reveals the breadth of T-cell(More)
Innate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a(More)
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for(More)
Recent studies have defined vaccinia virus (VACV)-specific CD8(+) T cell epitopes in mice and humans. However, little is known about the epitope specificities of CD4(+) T cell responses. In this study, we identified 14 I-A(b)-restricted VACV-specific CD4(+) T cell epitopes by screening a large set of 2146 different 15-mer peptides in C57BL/6 mice. These(More)
Antibody responses are critical components of protective immune responses to many pathogens, but parameters determining which proteins are targeted remain unclear. Vaccination with individual MHC-II-restricted vaccinia virus (VACV, smallpox vaccine) epitopes revealed that CD4(+) T cell help to B cells was surprisingly nontransferable to other virion protein(More)
Dendritic cells (DCs) play a pivotal role in the development of anti-viral CD8(+) CTL responses. This is straightforward if they are directly infected with virus, but is less clear in response to viruses that cannot productively infect DCS: Human CMV (HCMV) shows strain-specific cell tropism: fibroblast (Fb)-adapted laboratory strains (AD169) and recent(More)
Understanding immunity to vaccinia virus (VACV) is important for the development of safer vaccines for smallpox- and poxvirus-vectored recombinant vaccines. VACV is also emerging as an outstanding model for studying CD8(+) T cell immunodominance because of the large number of CD8(+) T cell epitopes known for this virus in both mice and humans. In this(More)
Diagnosis of tuberculosis often relies on the ex vivo IFN-γ release assays QuantiFERON-TB Gold In-Tube and T-SPOT.TB. However, understanding of the immunological mechanisms underlying their diagnostic use is still incomplete. Accordingly, we investigated T cell responses for the TB Ags included in the these assays and other commonly studied Ags: early(More)
Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the(More)
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate(More)