Magdalena Szechyńska-Hebda

Learn More
Plants are simultaneously exposed to abiotic and biotic hazards. Here, we show that local and systemic acclimation in Arabidopsis thaliana leaves in response to excess excitation energy (EEE) is associated with cell death and is regulated by specific redox changes of the plastoquinone (PQ) pool. These redox changes cause a rapid decrease of stomatal(More)
Although light is essential for photosynthesis, excess light can damage the photosynthetic apparatus and deregulate other cellular processes. Thus, protective integrated regulatory responses that can dissipate excess of absorbed light energy and simultaneously optimize photosynthesis and other cellular processes under variable light conditions can prove(More)
The zeta potential measurements of protoplasts obtained from winter wheat cell culture and phospholipid liposomes were performed to determine the electrokinetic charge in a medium containing various phytohormones (kinetin, 2,4-D and zearalenone) in absence and in presence of 2 x 10(-5) MCa2+. Calli were induced from immature inflorescences (inf) and embryos(More)
As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and(More)
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light(More)
As part of work to optimize the regeneration processes of winter wheat callus culture the effects of two auxins (2,4-D, IAA), two cytokinins (kinetin, zeatin), and the fungal mycotoxin zearalenone, were tested individually in vitro using embryo-, and inflorescence-derived callus. To determine the role of oxidative stress in cell regeneration, changes in the(More)
This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD),(More)
We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor cv. Nadwislanski). Endogenous hydrogen peroxide content and(More)
Plants coordinate their responses to various biotic and abiotic stresses in order to optimize their developmental and acclimatory programmes. The ultimate response to an excessive amount of stress is local induction of cell death mechanisms. The death of certain cells can help to maintain tissue homeostasis and enable nutrient remobilization, thus(More)
The accumulation of abscisic acid (ABA) and the activities of antioxidative enzymes along with cell metabolic activity were monitored during androgenesis induction in triticale (×Triticosecale Wittm.). Tested cultivars ‘Mieszko’ and ‘Wanad’ were selected due to their significantly different responses to androgenic induction. Significant variation was(More)