Magdalena Kijewska

Learn More
Human malignant glioblastomas are highly invasive tumors. Increased cell motility and degradation of the surrounding extracellular matrix are essential for tumor invasion. PI3K/Akt signaling pathway emerges as a common pathway regulating cellular proliferation, migration and invasion; however, its contribution to particular process and downstream cascades(More)
Gliomas attract brain-resident (microglia) and peripheral macrophages and reprogram these cells into immunosuppressive, pro-invasive cells. M-CSF (macrophage colony-stimulating factor, encoded by the CSF1 gene) has been implicated in the control of recruitment and polarization of macrophages in several cancers. We found that murine GL261 glioma cells(More)
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common(More)
Tumour tissue is infiltrated by myeloid cells that are reprogrammed into alternatively activated/regenerative (M2) macrophages. The contribution of major signalling pathways and their modulators/targets involved in the macrophage reprogramming is poorly known. Glioblastoma (malignant brain tumour) attracts and reprograms brain-resident microglia and(More)
Metastasis is a multistep process that is critically dependent on the interaction of metastasizing tumor cells with cells in the local microenvironment. Within this tumor stroma, vessel-associated pericytes and myofibroblasts share a number of traits, including the upregulated expression of the transmembrane receptor endosialin (CD248). Comparative(More)
Osteopontin (SPP1, a secreted phosphoprotein 1) is primarily involved in immune responses, tissue remodelling and biomineralization. However, it is also overexpressed in many cancers and regulates tumour progression by increasing migration, invasion and cancer stem cell self-renewal. Mechanisms of SPP1 overexpression in gliomas are poorly understood. We(More)
  • 1