Magali Moreau

Learn More
Initiation factor IF3 from Escherichia coli plays a critical role in the selection of the correct initiation codon. This protein is composed of two domains, connected by a lysin-rich hydrophilic linker. The conformation of native IF3 was investigated by heteronuclear NMR spectroscopy. The two domains are independent and show little or no interaction.(More)
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate L-Arg first to N(omega)-hydroxyl-L-arginine and then to L-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the(More)
NO-Synthases are heme proteins that catalyze the oxidation of L-arginine into NO and L-citrulline. Some non-amino acid alkylguanidines may serve as substrates of inducible NOS (iNOS), while no NO* production is obtained from arylguanidines. All studied guanidines induce uncoupling between electrons transferred from the reductase domain and those required(More)
Crystal structures of nitric oxide synthases (NOS) isoforms have shown the presence of a strongly conserved heme active-site residue, Tyr588 (numbering for rat neuronal NOS, nNOS). Preliminary biochemical studies have highlighted its importance in the binding and oxidation to NO of natural substrates L-Arg and N(omega)-hydroxy-L-arginine (NOHA) and(More)
A study of the oxidation of a series of guanidines related to L-arginine (L-Arg) and of various alkyl- and arylguanidines, by recombinant NO-synthase II (NOS II), led us to the discovery of the first non-alpha-amino acid guanidine substrate of NOS, acting as an efficient NO precursor. This compound, 3-(trifluoromethyl)propylguanidine, 4, led to a rate of NO(More)
Nitric oxide (NO) is synthesised by a two-step oxidation of -arginine (L-Arg) in the active site of nitric oxide synthase (NOS) with formation of an intermediate, N omega-hydroxy-L-Arg (NOHA). Crystal structures of NOSs have shown the importance of an active-site Val567 residue (numbered for rat neuronal NOS, nNOS) interacting with non-amino acid(More)
  • 1