Magali Deleu

Learn More
Mixed monolayers of the surface-active lipopeptide surfactin-C(15) and various lipids differing by their chain length (DMPC, DPPC, DSPC) and polar headgroup (DPPC, DPPE, DPPS) were investigated by atomic force microscopy (AFM) in combination with molecular modeling (Hypermatrix procedure) and surface pressure-area isotherms. In the presence of surfactin,(More)
The combination of atomic force microscopy (AFM) and the Langmuir trough technique was used in this work to investigate the molecular interactions of fengycin with lipid monolayers constituted of the major lipid classes found in human stratum corneum (SC). AFM imaging o f spread SC lipids/fengycin monolayers showed that fengycin preferentially partitions(More)
Fengycin is a biologically active lipopeptide produced by several Bacillus subtilis strains. The lipopeptide is known to develop antifungal activity against filamentous fungi and to have hemolytic activity 40-fold lower than that of surfactin, another lipopeptide produced by B. subtilis. The aim of this work is to use complementary biophysical techniques to(More)
The O-octanoylation of human ghrelin is a natural post-translational modification that enhances its binding to model membranes and could potentially play a central role in ghrelin biological activities. Here, we aimed to clarify the mechanisms that drive ghrelin to the membrane and hence to its receptor that mediates most of its endocrinological effects. As(More)
The structures of the two fengycins, lipopeptides from Bacillus subtilis, were elucidated by spectroscopic methods and chemical degradation. They show a close structural relationship to the plipastatins from Bacillus cereus differing only in the stereochemistry of the Tyr residues.
We used real-time atomic force microscopy (AFM) to visualize the interactions between supported lipid membranes and well-defined surfactin analogs, with the aim to understand the influence of geometry, charge and hydrophobicity. AFM images of mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers recorded after injection of(More)
The lipopeptide surfactin secreted by plant-beneficial bacilli has crucial biological functions among which the ability to stimulate immune-related responses in host tissues. This phenomenon is important for biological control of plant diseases but its molecular basis is still poorly understood. In this work, we used various approaches to study the(More)
In this study, we investigated the interaction of fengycin, a lipopeptide produced by Bacillus subtilis, with lipid monolayers using the Langmuir trough technique in combination with Brewster angle microscopy. Thermodynamic analyses were performed to get further information about the mixing behavior and the molecular interactions between the two components.(More)
New linear analogs of surfactin have been synthesized. Their physico-chemical parameters were determined. The results indicate that these linear products show surface activities although they are lowered compared to those of cyclic compounds. The hemolytic activities have also been assayed. In contrast with cyclic surfactins, no significant hemolysis occurs(More)
Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with(More)