Learn More
Budding yeast grown under continuous, nutrient-limited conditions exhibit robust, highly periodic cycles in the form of respiratory bursts. Microarray studies reveal that over half of the yeast genome is expressed periodically during these metabolic cycles. Genes encoding proteins having a common function exhibit similar temporal expression patterns, and(More)
The eukaryotic cell division cycle depends on an intricate sequence of transcriptional events. Using an algorithm based on maximum-entropy deconvolution, and expression data from a highly synchronized yeast culture, we have timed the peaks of expression of transcriptionally regulated cell cycle genes to an accuracy of 2 min (approximately equal to 1% of the(More)
Valosin-containing protein (VCP; p97; cdc48 in yeast) is a hexameric ATPase of the AAA family (ATPases with multiple cellular activities) involved in multiple cellular functions, including degradation of proteins by the ubiquitin (Ub)-proteasome system (UPS). We examined the consequences of the reduction of VCP levels after RNA interference (RNAi) of VCP. A(More)
We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to(More)
SUMMARY SCEPTRANS is designed for analysis of microarray timecourse data related to periodic phenomena in the budding yeast. The server allows for easy viewing of temporal profiles of multiple genes in a number of datasets. Additional functionality includes searching for coexpressed genes, periodicity and correlation analysis, integrating functional(More)
While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently(More)
Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in(More)
Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to(More)
Modulators (Ms) are proteins that modify the activity of transcription factors (TFs) and influence expression of their target genes (TGs). To discover modulators of NF-κB/RelA, we first identified 365 NF-κB/RelA-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used a probabilistic model to infer 8349 (M, NF-κB/RelA, TG)(More)
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation(More)