Mads S Toustrup-Jensen

Learn More
The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as(More)
The Na(+)/K(+)-ATPases are ion pumps of fundamental importance in maintaining the electrochemical gradient essential for neuronal survival and function. Mutations in ATP1A3 encoding the alpha3 isoform cause rapid-onset dystonia-parkinsonism (RDP). We report a de novo ATP1A3 mutation in a patient with typical RDP, consisting of an in-frame insertion of a(More)
Rapid-onset dystonia parkinsonism (RDP), a rare neurological disorder, is caused by mutation of the neuron-specific alpha3-isoform of Na(+), K(+)-ATPase. Here, we present the functional consequences of RDP mutation D923N. Relative to the wild type, the mutant exhibits a remarkable approximately 200-fold reduction of Na(+) affinity for activation of(More)
The Na(+),K(+)-ATPase C terminus has a unique location between transmembrane segments, appearing to participate in a network of interactions. We have examined the functional consequences of amino acid substitutions in this region and deletions of the C terminus of varying lengths. Assays revealing separately the mutational effects on internally and(More)
The Na(+),K(+)-ATPase plays key roles in brain function. Recently, missense mutations in the Na(+),K(+)-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead to functionally altered, but active,(More)
Gly263 of the rat kidney Na(+),K(+)-ATPase is highly conserved within the family of P-type ATPases. Mutants in which Gly263 or the juxtaposed Arg264 had been replaced by alanine were expressed at high levels in COS-1 cells and characterized functionally. Titrations of Na(+),K(+), ATP, and vanadate dependencies of Na(+),K(+)-ATPase activity showed changes in(More)
The Na+,K+-ATPase transforms the energy of ATP to the maintenance of steep electrochemical gradients for sodium and potassium across the plasma membrane. This activity is tissue specific, in particular due to variations in the expressions of the alpha subunit isoforms one through four. Several mutations in alpha2 and 3 have been identified that link the(More)
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na(+),K(+)-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation.(More)
A cytoplasmic nontransport K(+)/Rb(+) site in the P-domain of the Na(+), K(+)-ATPase has been identified by anomalous difference Fourier map analysis of crystals of the [Rb(2)].E(2).MgF(4)(2-) form of the enzyme. The functional roles of this third K(+)/Rb(+) binding site were studied by site-directed mutagenesis, replacing the side chain of Asp(742)(More)
Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the(More)