Mads Græsbøll Christensen

Learn More
The aim of this paper is to provide an overview of Sparse Linear Prediction, a set of speech processing tools created by introducing sparsity constraints into the linear prediction framework. These tools have shown to be effective in several issues related to modeling and coding of speech signals. For speech analysis, we provide predictors that are accurate(More)
We investigate the conditions for which nonnegative matrix factorization (NMF) is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by(More)
In this paper, we present a novel method for joint estimation of the fundamental frequency and order of a set of harmonically related sinusoids based on the multiple signal classification (MUSIC) estimation criterion. The presented method, termed HMUSIC, is shown to have an efficient implementation using fast Fourier transforms (FFTs). Furthermore, refined(More)
Encouraged by the promising application of compressed sensing in signal compression, we investigate its formulation and application in the context of speech coding based on sparse linear prediction. In particular, a compressed sensing method can be devised to compute a sparse approximation of speech in the residual domain when sparse linear prediction is(More)
In music similarity and in the related task of genre classification, a distance measure between Gaussian mixture models is frequently needed. We present a comparison of the KullbackLeibler distance, the earth movers distance and the normalized L2 distance for this application. Although the normalized L2 distance was slightly inferior to the Kullback-Leibler(More)
In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then, we propose a(More)
In this paper, we consider the application of compressed sensing (aka compressive sampling) to speech and audio signals. We discuss the design considerations and issues that must be addressed in doing so, and we apply compressed sensing as a pre-processor to sparse decompositions of real speech and audio signals using dictionaries composed of windowed(More)
The pure greedy algorithms matching pursuit (MP) and complementary MP (CompMP) are extremely computationally simple, but can perform poorly in solving the linear inverse problems posed by the recovery of compressively sampled sparse signals. We show that by applying a cyclic minimization principle, the performance of both are significantly improved while(More)
This paper presents two new classes of linear prediction schemes. The first one is based on the concept of creating a sparse residual rather than a minimum variance one, which will allow a more efficient quantization; we will show that this works well in presence of voiced speech, where the excitation can be represented by an impulse train, and creates a(More)