Madoka Suzuki

Learn More
The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca(2+) and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca(2+), we investigated the force-sarcomere length (SL)(More)
We fabricated fluorescent nanoparticles which monitor temperature changes without sensitivity to pH (4-10) and ionic strength (0-500 mM). The nanothermometers spontaneously enter living HeLa cells via endocytosis, enclosed in acidic organelles, i.e., endosome/lysosome, and then transported along microtubules in a temperature-dependent manner, working as(More)
The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target(More)
A molecular motor in striated muscle, myosin II, is a non-processive motor that is unable to perform physiological functions as a single molecule and acts as an assembly of molecules. It is widely accepted that a myosin II motor is an independent force generator; the force generated at a steady state is usually considered to be a simple sum of those(More)
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and(More)
Temperature-sensitive Ca(2+) dynamics occur primarily through transient receptor potential channels, but also by means of Ca(2+) channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses(More)
Single transient laser-induced microbubbles have been used in microfluidic chips for fast actuation of the liquid (pumping and mixing), to interact with biological materials (selective cell destruction, membrane permeabilization and rheology) and more recenty for medical diagnosis. However, the expected heating following the collapse of a microbubble(More)
Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite(More)
  • 1