Madhusudhanan Narasimhan

Learn More
Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at(More)
Ethanol (ETOH) can cause apoptotic death of neurons by depleting GSH with an associated increase in oxidative stress. The current study illustrates a means to overcome this ETOH-induced neurotoxicity by enhancing GSH through boosting Nrf2, a transcription factor that controls GSH homeostasis. ETOH treatment caused a significant increase in Nrf2 protein,(More)
Primary cultures of fetal rat cortical neurons and astrocytes were used to test the hypothesis that astrocyte-mediated control of neuronal glutathione (GSH) is a potent factor in neuroprotection against rotenone and paraquat. In neurons, rotenone (0.025-1 μM) for 4 and 24 h decreased viability as did paraquat (2-100 μM). Rotenone (30 nM) decreased neuronal(More)
Glutathione (GSH), a major cellular antioxidant protects cells against oxidative stress injury. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2) is a redox sensitive master regulator of battery of antioxidant enzymes including those involved in GSH antioxidant machinery. Earlier we reported that ethanol (ETOH) elicits apoptotic death of primary(More)
BACKGROUND Prenatal exposure to ethanol (EtOH) elicits a range of neuro-developmental abnormalities, microcephaly to behavioral deficits. Impaired protein synthesis has been connected to pathogenesis of EtOH-induced brain damage and abnormal neuron development. However, mechanisms underlying these impairments of protein synthesis are not known. In this(More)
Ingestion of ethanol (ETOH) during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4), a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs) and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol(More)
Developing brain is a major target for alcohol’s actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal(More)
We have recently shown that macrophage-stimulating protein (MSP) promotes the invasion of recepteur d'origine nantais (RON), a tyrosine kinase receptor-positive MDA-MB-231, MDA-MB-468 breast cancer cells, and also identified the regulatory elements required for RON gene expression. In this report, we have analyzed the efficacy of a chemopreventive agent,(More)
Skeletal muscle redox homeostasis is transcriptionally regulated by nuclear erythroid-2-p45-related factor-2 (Nrf2). We recently demonstrated that age-associated stress impairs Nrf2-ARE (antioxidant-response element) transcriptional signaling. Here, we hypothesize that age-dependent decline or genetic ablation of Nrf2 leads to accelerated apoptosis and(More)
Epidemiological and animal studies suggest that environmental toxins including paraquat (PQ) increase the risk of developing Parkinson's disease (PD) by damaging nigrostriatal dopaminergic neurons. We previously showed that overexpression of a group of microRNAs (miRs) affects the antioxidant promoting factor, Nrf2 and related glutathione-redox homeostasis(More)