Madhusudhanan Narasimhan

Learn More
Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at(More)
Primary cultures of fetal rat cortical neurons and astrocytes were used to test the hypothesis that astrocyte-mediated control of neuronal glutathione (GSH) is a potent factor in neuroprotection against rotenone and paraquat. In neurons, rotenone (0.025-1 μM) for 4 and 24 h decreased viability as did paraquat (2-100 μM). Rotenone (30 nM) decreased neuronal(More)
Ingestion of ethanol (ETOH) during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4), a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs) and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol(More)
Antagonizing TNF-α signaling attenuates chronic inflammatory disease, but is associated with adverse effects on the cardiovascular system. Therefore the impact of TNF-α on basal control of redox signaling events needs to be understand in more depth. This is particularly important for the Keap1/Nrf2 pathway in the heart and in the present study we(More)
Aging is represented by a progressive decline in cellular functions. The age-related deformities in cardiac behaviors are the loss of cardiac myocytes through apoptosis or programmed cell death. Oxidative stress (OS) and its deleterious consequence contribute to age-related mechanical remodeling, reduced regenerative capacity, and apoptosis in cardiac(More)
Developing brain is a major target for alcohol’s actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal(More)
Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial(More)
  • 1