Madhusudana V. S. Shashanka

Learn More
This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invariances, higher-order decompositions and sparsity(More)
In this paper we describe a methodology for model-based single channel separation of sounds. We present a sparse latent variable model that can learn sounds based on their distribution of time/frequency energy. This model can then be used to extract known types of sounds from mixtures in two scenarios. One being the case where all sound types in the mixture(More)
In this paper we describe a model developed for the analysis of acoustic spectra. Unlike decompositions techniques that can result in difficult to interpret results this model explicitly models spectra as distributions and extracts sets of additive and semantically useful components that facilitate a variety of applications ranging from source separation,(More)
In this paper we describe a technique that allows the extraction of multiple local shift-invariant features from analysis of non-negative data of arbitrary dimensionality. Our approach employs a probabilistic latent variable model with sparsity constraints. We demonstrate its utility by performing feature extraction in a variety of domains ranging from(More)
In this paper we present an algorithm for separating mixed sounds from a monophonic recording. Our approach makes use of training data which allows us to learn representations of the types of sounds that compose the mixture. In contrast to popular methods that attempt to extract compact generalizable models for each sound from training data, we employ the(More)
An important problem in many fields is the analysis of counts data to extract meaningful latent components. Methods like Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) have been proposed for this purpose. However, they are limited in the number of components they can extract and lack an explicit provision to control the(More)
Broadcast is an efficient and scalable way of transmitting data to an unlimited number of clients that are listening to a channel. Cyclically broadcasting data over the channel is a basic scheduling technique, which is known as flat scheduling. When multiple channels are available, a data allocation technique is needed to assign data to channels.(More)
We present an algorithm for separating multiple speakers from a mixed single channel recording. The algorithm is based on a model proposed by Raj and Smaragdis (2005). The idea is to extract certain characteristic spectra-temporal basis functions from training data for individual speakers and decompose the mixed signals as linear combinations of these(More)
In this paper, we present a process which enables privacy-preserving speech recognition transactions between two parties. We assume one party with private speech data and one party with private speech recognition models. Our goal is to enable these parties to perform a speech recognition task using their data, but without exposing their private information(More)
With the recent attention towards audio processing in the time-frequency domain we increasingly encounter the problem of missing data within that representation. In this paper we present an approach that allows us to recover missing values in the time-frequency domain of audio signals. The presented approach is able to deal with real-world polyphonic(More)