Madhura Ingalhalikar

Learn More
Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a(More)
This paper presents a paradigm for generating a quantifiable marker of pathology that supports diagnosis and provides a potential biomarker of neuropsychiatric disorders, such as autism spectrum disorder (ASD). This is achieved by creating high-dimensional nonlinear pattern classifiers using support vector machines (SVM), that learn the underlying pattern(More)
Most diffusion imaging studies have used subject registration to an atlas space for enhanced quantification of anatomy. However, standard diffusion tensor atlases lack information in regions of fiber crossing and are based on adult anatomy. The degree of error associated with applying these atlases to studies of children for example has not yet been(More)
The paper presents a method of creating abnormality classifiers learned from Diffusion Tensor Imaging (DTI) data of a population of patients and controls. The score produced by the classifier can be used to aid in diagnosis as it quantifies the degree of pathology. Using anatomically meaningful features computed from the DTI data we train a non-linear(More)
This paper presents a comprehensive effort to establish a structural mouse connectome using diffusion tensor magnetic resonance imaging coupled with connectivity analysis tools. This work lays the foundation for imaging-based structural connectomics of the mouse brain, potentially facilitating a whole-brain network analysis to quantify brain changes in(More)
The paper presents a method for learning multimodal classifiers from datasets in which not all subjects have data from all modalities. Usually, subjects with a severe form of pathology are the ones failing to satisfactorily complete the study, especially when it consists of multiple imaging modalities. A classifier capable of handling subjects with unequal(More)
This article presents a method (DROID) for deformable registration of diffusion tensor (DT) images that utilizes the full tensor information by integrating the intensity and orientation features into a hierarchical matching framework. The intensity features are derived from eigen value based measures that characterize the tensor in terms of its different(More)
Structural connectivity models hold great promise for expanding what is known about the ways information travels throughout the brain. The physiologic interpretability of structural connectivity models depends heavily on how the connections between regions are quantified. This article presents an integrated structural connectivity framework designed around(More)
This work presents an automated method for partitioning neuronal white matter (WM) into regions of interest with uniform WM architecture. These regions can then be used to replace atlas-derived regions for any subsequent statistical analysis. The fiber orientation distribution function is used as a model of WM architecture resulting in a voxel similarity(More)
The paper presents a method for creating abnormality classifiers from high angular resolution diffusion imaging (HARDI) data. We utilized the fiber orientation distribution (FOD) diffusion model to represent the local WM architecture of each subject. The FOD images are then spatially normalized to a common template using a non-linear registration technique.(More)