Learn More
Deployment of the root system is highly sensitive to the levels and spatial distribution of nutrients like nitrogen. However, the genetic determinants of these sensing and deployment mechanisms are still poorly understood. Previously, using system approaches based on temporal changes in root transcriptome in relation to low nitrogen (LN), we have been able(More)
In Populus, low nitrogen (LN) elicits rapid and vigorous lateral root (LR) proliferation, which is closely mirrored by corresponding transcriptomic changes. Using transcriptomic data, we built a genetic network encompassing a large proportion of the differentially regulated transcriptome. The network is organized in a hierarchical fashion, centered on 11(More)
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the(More)
  • 1