Learn More
In a finite volume CFD method for unsteady flow fluxes of mass, momentum and energy are exchanged between cells over a series of small time steps. The conventional approach, which we will refer to as direction decoupling, is to estimate fluxes across interfaces in a regular array of cells by using a one-dimensional flux expression based on the component of(More)
All conventional metals are known to possess a three-dimensional Fermi surface, which is the locus in reciprocal space of the long-lived electronic excitations that govern their electronic properties at low temperatures. These excitations should have well-defined momenta with components in all three dimensions. The high-transition-temperature (high-T(c))(More)
We have performed electrical transport measurements at low temperatures and high magnetic fields in Na(0.5)CoO2 single crystals. Shubnikov-de Haas oscillations corresponding to only 1% of the area of the orthorhombic Brillouin zone were clearly observed, indicating that most of the original Fermi surface vanishes at the charge-ordering (CO) transition.(More)
Angle-dependent magnetoresistance measurements are used to determine the isotropic and anisotropic components of the transport scattering rate in overdoped Tl2Ba2CuO6+delta for a range of Tc values between 15 and 35 K. The size of the anisotropic scattering term is found to scale linearly with Tc, establishing a link between the superconducting and normal(More)
In the Direct Simulation Monte Carlo method, a combination of statistical and de-terministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the(More)
  • 1