Learn More
Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and(More)
Activity-dependent local translation of dendritic mRNAs is one process that underlies synaptic plasticity. Here, we demonstrate that several of the factors known to control polyadenylation-induced translation in early vertebrate development [cytoplasmic polyadenylation element-binding protein (CPEB), maskin, poly(A) polymerase, cleavage and polyadenylation(More)
X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing(More)
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by(More)
CPEB is an mRNA-binding protein that stimulates polyadenylation-induced translation of maternal mRNA once it is phosphorylated on Ser 174 or Thr 171 (species-dependent). Disruption of the CPEB gene in mice causes an arrest of oogenesis at embryonic day 16.5 (E16.5), when most oocytes are in pachytene of prophase I. Here, we show that CPEB undergoes Thr 171(More)
  • 1