Mackenzie L. Zippay

Learn More
Previous research on the Antarctic notothenioid fish Trematomus bernacchii demonstrated the loss of the heat shock response (HSR), a classical cellular defense mechanism against thermal stress, characterized by the rapid synthesis of heat shock proteins (Hsps). In the current study, we examined potential mechanisms for the apparent loss of the HSR in(More)
Although the physiological response of teleost fishes to increased temperature has been well documented, there is only a small body of literature that examines the effects of ocean acidification on fish under ecologically relevant scenarios. Furthermore, little data exists which examines the possible synergistic effects of increased sea surface temperatures(More)
Ocean acidification, the reduction of ocean pH due to the absorption of anthropogenic atmospheric CO2, is expected to influence marine ecosystems through effects on marine calcifying organisms. These effects are not well understood at the community and ecosystem levels, although the consequences are likely to involve range shifts and population declines. A(More)
The intertidal zone has historically functioned as an important natural laboratory for testing ideas about how physical factors such as temperature influence organismal physiology and in turn influence the distribution patterns of organisms. Key to our understanding of how the physical environment helps structure organismal distribution is the(More)
A growing body of research on calcifying marine invertebrates suggests that ocean acidification will have deleterious effects on development and various physiological processes in these organisms. In laboratory experiments designed to mimic seawater chemistry in future oceans, we examined the effect of pH reduction, driven by the carbon dioxide (CO2)(More)
A critical step in understanding how temperature will affect biodiversity in coastal ecosystems is to gain insight into how the tolerances, and ultimately survival, of early life history stages will influence the distribution and abundance of adults. We assessed the thermal tolerance of encapsulated veliger-stage larvae of a common dogwhelk, Nucella(More)
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics(More)
We report the isolation and characterization of 16 microsatellite loci to study the population genetics of the giant kelp, Macrocystis pyrifera. Markers were obtained by screening a genomic library enriched for microsatellite motifs. Of the 37 primer pairs defined, 16 amplified clean polymorphic microsatellites and are described. These loci identified a(More)
Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting(More)