Mackenzie A. Firer-Sherwood

Learn More
The multi-heme cytochromes from Shewanella oneidensis associated with the dissimilatory metal reduction (DMR) pathway have been investigated using the technique of protein film voltammetry (PFV). Using PFV, we have interrogated each of the multi-heme cytochromes (MtrA, STC, and solubilized versions of the membrane-bound proteins CymA, OmcA, and MtrC) under(More)
Examining electron transfer between two proteins with identical spectroscopic signatures is a challenging task. It is supposed that several multiheme cytochromes in Shewanella oneidensis form a molecular "wire" through which electrons are transported across the cellular space and a direct study of this transient protein-protein interaction has not yet been(More)
Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the(More)
The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular(More)
While iron is often a limiting nutrient to Biology, when the element is found in the form of heme cofactors (iron protoporphyrin IX), living systems have excelled at modifying and tailoring the chemistry of the metal. In the context of proteins and enzymes, heme cofactors are increasingly found in stoichiometries greater than one, where a single protein(More)
Protein-protein interactions are well-known to regulate enzyme activity in cell signaling and metabolism. Here, we show that protein-protein interactions regulate the activity of a respiratory-chain enzyme, CymA, by changing the direction or bias of catalysis. CymA, a member of the widespread NapC/NirT superfamily, is a menaquinol-7 (MQ-7) dehydrogenase(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
  • 1