Learn More
We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. After tuning the model by adjusting(More)
Ketamine, an N-methyl-D-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner. We investigated the effects of ketamine on in vivo recordings from(More)
Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multicompartment neurons [pyramidal, basket, and oriens-lacunosum(More)
INTRODUCTION Electrophysiological responses to auditory stimuli have provided a useful means of elucidating mechanisms and evaluating treatments in psychiatric disorders. Deficits in gating during paired-click tasks and lack of mismatch negativity following deviant stimuli have been well characterized in patients with schizophrenia. Recently, analyses of(More)
The dendritic trees of hippocampal pyramidal cells play important roles in the establishment and regulation of network connectivity, synaptic plasticity, and firing dynamics. Several laboratories routinely reconstruct CA3 and CA1 dendrites to correlate their three-dimensional structure with biophysical, electrophysiological, and anatomical observables. To(More)
Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We(More)
Principal component analysis was applied to human gait patterns to investigate the role and relative importance of temporal versus spatial features. Datasets consisted of various limb and body angles sampled over increasingly long time intervals. We find that spatial and temporal cues may be useful for different aspects of recognition. Temporal cues contain(More)
While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the(More)
There is great interest in the role of coherent oscillations in the brain. In some cases, high-frequency oscillations (HFOs) are integral to normal brain function, whereas at other times they are implicated as markers of epileptic tissue. Mechanisms underlying HFO generation, especially in abnormal tissue, are not well understood. Using a physiological(More)
We introduce a novel computational model of hippocampal pyramidal cells physiology based on an up-to-date, detailed description of passive and active biophysical properties and real dendritic morphology. This model constitutes a modification of a previous (1995) model which included complex calcium dynamics and Na(+), K(+), and Ca(2+) currents. Changes(More)