Maciej P. Wojtkowski

Learn More
Excessive retinal vascular permeability contributes to the pathogenesis of proliferative diabetic retinopathy and diabetic macular edema, leading causes of vision loss in working-age adults. Using mass spectroscopy-based proteomics, we detected 117 proteins in human vitreous and elevated levels of extracellular carbonic anhydrase-I (CA-I) in vitreous from(More)
Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the few micron scale. Fourier domain detection methods enable more than an order of magnitude increase in imaging speed and sensitivity, thus overcoming the sensitivity limitations inherent in ultrahigh-resolution OCT using standard time(More)
We present what is to our knowledge the first in vivo tomograms of human retina obtained by Fourier domain optical coherence tomography. We would like to show that this technique might be as powerful as other optical coherence tomography techniques in the ophthalmologic imaging field. The method, experimental setup, data processing, and images are discussed.
We demonstrate a new technique for frequency-swept laser operation--Fourier domain mode locking (FDML)--and its application for swept-source optical coherence tomography (OCT) imaging. FDML is analogous to active laser mode locking for short pulse generation, except that the spectrum rather than the amplitude of the light field is modulated. High-speed,(More)
PURPOSE To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. METHODS Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments.(More)
In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection(More)
PURPOSE To describe two cases of peripapillary retinal schisis in patients with glaucoma without evidence of optic nerve pits, pseudopits, or X-linked retinoschisis. DESIGN Two observational case reports and literature review. METHODS Imaging of the peripapillary nerve fiber layer and schisis cavities was completed in two patients, and one patient was(More)
OBJECTIVE To assess high-speed ultrahigh-resolution optical coherence tomography (OCT) image resolution, acquisition speed, image quality, and retinal coverage for the visualization of macular pathologies. DESIGN Retrospective cross-sectional study. PARTICIPANTS Five hundred eighty-eight eyes of 327 patients with various macular pathologies. METHODS(More)
Over the 15 years since the original description, optical coherence tomography (OCT) has become one of the key diagnostic technologies in the ophthalmic subspecialty areas of retinal diseases and glaucoma. The reason for the widespread adoption of this technology originates from at least two properties of the OCT results: on the one hand, the results are(More)