#### Filter Results:

#### Publication Year

1984

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Recently, opacity has proved to be a promising technique for describing security properties. Much of the work has been couched in terms of Petri nets. Here, we extend the notion of opacity to the model of labelled transition systems and generalise opacity in order to better represent concepts from the work on information flow. In particular, we establish… (More)

We consider opacity as a property of the local states of the secure (or high-level) part of the system, based on the observation of the local states of a low-level part of the system as well as actions. We propose a Petri net modelling technique which allows one to specify different information flow properties, using suitably defined observations of system… (More)

In this paper, we develop a general technique for truncating Petri net un-foldings, parameterized according to the level of information about the original unfolding one wants to preserve. Moreover, we propose a new notion of completeness of a truncated unfolding, which with the standard parameters is strictly stronger than that given in [5, 6], and is more… (More)

We consider the modelling of the behaviour of membrane systems using Petri nets. First, a systematic, structural, link is established between a basic class of membrane systems and Petri nets. To capture the compartmentisation of membrane systems, localities are proposed as an extension of Petri nets. This leads to a locally maximal concurrency semantics for… (More)

Model checking based on the causal partial order semantics of Petri nets is an approach widely applied to cope with the state space explosion problem. One of the ways to exploit such a semantics is to consider (finite prefixes of) net unfoldings — themselves a class of acyclic Petri nets — which contain enough information, albeit implicit, to reason about… (More)

The paper presents a new method for checking Uniqueand Complete State Coding, the crucial conditions in thesynthesis of asynchronous control circuits from Signal TransitionGraphs (STGs). The method detects state coding conflictsin an STG using its partial order semantics (unfoldingprefix) and an integer programming technique. This leads tohuge memory… (More)