Maciej Kmiec

Learn More
As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those(More)
We have previously shown that seizures induce the formation of F(2)-isoprostanes (F(2)-IsoPs), one of the most reliable indices of oxidative stress in vivo. Isofurans (IsoFs) are novel products of lipid peroxidation whose formation is favored by high oxygen tensions. In contrast, high oxygen tensions suppress the formation of F(2)-IsoPs. The present study(More)
The development of in vivo EPR has made it feasible to perform tooth dosimetry measurements in situ, greatly expanding the potential for using this approach for immediate screening after radiation exposures. The ability of in vivo tooth dosimetry to provide estimates of absorbed dose has been established through a series of experiments using unirradiated(More)
In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable(More)
With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical(More)
Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along(More)
Finite element analysis is used to evaluate and design L-band surface loop resonators for in vivo electron paramagnetic resonance (EPR) tooth dosimetry. This approach appears to be practical and useful for the systematic examination and evaluation of resonator configurations to enhance the precision of dose estimates. The effects of loop positioning in the(More)
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear(More)
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by(More)
In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance(More)