Learn More
The development of in vivo EPR has made it feasible to perform tooth dosimetry measurements in situ, greatly expanding the potential for using this approach for immediate screening after radiation exposures. The ability of in vivo tooth dosimetry to provide estimates of absorbed dose has been established through a series of experiments using unirradiated(More)
We have previously shown that seizures induce the formation of F(2)-isoprostanes (F(2)-IsoPs), one of the most reliable indices of oxidative stress in vivo. Isofurans (IsoFs) are novel products of lipid peroxidation whose formation is favored by high oxygen tensions. In contrast, high oxygen tensions suppress the formation of F(2)-IsoPs. The present study(More)
In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable(More)
Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along(More)
With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical(More)
As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those(More)
Finite element analysis is used to evaluate and design L-band surface loop resonators for in vivo electron paramagnetic resonance (EPR) tooth dosimetry. This approach appears to be practical and useful for the systematic examination and evaluation of resonator configurations to enhance the precision of dose estimates. The effects of loop positioning in the(More)
There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been(More)
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear(More)
Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate(More)