Maarten van Iterson

Learn More
Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes(More)
  • Maaike van Putten, Margriet Hulsker, Vishna Devi Nadarajah, Sandra H. van Heiningen, Ella van Huizen, Maarten van Iterson +5 others
  • 2012
Duchenne muscular dystrophy (DMD) is a severe progressive muscular disorder caused by reading frame disrupting mutations in the DMD gene, preventing the synthesis of functional dystrophin. As dystrophin provides muscle fiber stability during contractions, dystrophin negative fibers are prone to exercise-induced damage. Upon exhaustion of the regenerative(More)
Long noncoding RNAs (lncRNAs) form an abundant class of transcripts, but the function of the majority of them remains elusive. While it has been shown that some lncRNAs are bound by ribosomes, it has also been convincingly demonstrated that these transcripts do not code for proteins. To obtain a comprehensive understanding of the extent to which lncRNAs(More)
Current microRNA target predictions are based on sequence information and empirically derived rules but do not make use of the expression of microRNAs and their targets. This study aimed to improve microRNA target predictions in a given biological context, using in silico predictions, microRNA and mRNA expression. We used target prediction tools to produce(More)
UNLABELLED The Illumina 450k array is a frequently used platform for large-scale genome-wide DNA methylation studies, i.e. epigenome-wide association studies. Currently, quality control of 450k data can be performed with Illumina's GenomeStudio and is part of a limited number 450k analysis pipelines. However, GenomeStudio cannot handle large-scale studies,(More)
The methylome is subject to genetic and environmental effects. Their impact may depend on sex and age, resulting in sex- and age-related physiological variation and disease susceptibility. Here we estimate the total heritability of DNA methylation levels in whole blood and estimate the variance explained by common single nucleotide polymorphisms at 411,169(More)
Cells can be primed by external stimuli to obtain a long-term epigenetic memory. We hypothesize that long-term exposure to elevated blood lipids can prime circulating immune cells through changes in DNA methylation, a process that may contribute to the development of atherosclerosis. To interrogate the causal relationship between triglyceride, low-density(More)
Epigenetic change is a hallmark of ageing but its link to ageing mechanisms in humans remains poorly understood. While DNA methylation at many CpG sites closely tracks chronological age, DNA methylation changes relevant to biological age are expected to gradually dissociate from chronological age, mirroring the increased heterogeneity in health status at(More)
  • 1