Maarten J J van den Hurk

Learn More
The secretory activity of melanotroph cells from Xenopus laevis is regulated by multiple neurotransmitters that act through adenylyl cyclase. Cyclic adenosine monophosphate (cAMP), acting on protein kinase A (PKA), stimulates the frequency of intracellular Ca(2+) oscillations and the secretory activity of the melanotroph cell. Anchoring of PKA near target(More)
Melanotrope cells of Xenopus laevis generate transitory increases in intracellular Ca(2+), known as Ca(2+) oscillations. These oscillations arise from the influx of Ca(2+) through voltage-operated Ca(2+) channels (VOCCs). Such oscillations are the driving force for secretion of a-melanophore-stimulating hormone (alpha-MSH) from the cell. The influx of(More)
Secretion of alpha-melanophore-stimulating hormone (alpha-MSH) from the neuroendocrine melanotrope cells in the intermediate lobe of the pituitary gland of the clawed frog Xenopus laevis is regulated by various inhibitory, stimulatory and autocrine factors. The neuropeptide sauvagine stimulates alpha-MSH secretion by changing the pattern of intracellular(More)
  • 1