Maaike Bouwes Bavinck

  • Citations Per Year
Learn More
Quantum communication as well as integrated photonic circuits require single photons propagating in a well-defined Gaussian mode. However, tailoring the emission mode to a Gaussian remains an unsolved challenge for solid-state quantum emitters due to their random positioning in the host material or photonic structure. Here, we overcome these limitations by(More)
We tune the emission wavelength of an InAsP quantum dot in an InP nanowire over 200 meV by depositing a SiO(2) envelope using plasma-enhanced chemical vapor deposition without deterioration of the optical quality. This SiO(2) envelope generates a controlled static strain field. Both red and blue shift can be easily achieved by controlling the deposition(More)
We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer(More)
  • 1