Ma José Morcillo

Learn More
Serotonin (5-hydroxytryptamine, 5-HT) is one of the most attractive targets for medicinal chemists. Among 5-HTRs, the 5-HT(1A) subtype is the best studied and it is generally accepted that it is involved in psychiatric disorders such as anxiety and depression. Several structurally different compounds are known to bind 5-HT(1A)R sites. Among these,(More)
A series of 48 bicyclohydantoin-phenylpiperazines (1-4) with affinity for 5-HT1A and alpha 1 receptors was subjected to three-dimensional quantitative structure-affinity relationship analysis using comparative molecular field analysis (CoMFA), in order to get insight into the structural requirements that are responsible for 5-HT1A/alpha 1 selectivity. Good(More)
A classical quantitative structure-activity relationship (Hansch) study and artificial neural networks (ANNs) have been applied to a training set of 32 substituted phenylpiperazines with affinity for 5-HT(1A) and alpha(1)-adrenergic receptors, to evaluate the structural requirements that are responsible for 5-HT(1A)/alpha(1) selectivity. The resulting(More)
Based on a computational model for 5-HT(1A)R-ligand interaction and QSAR studies, we have designed and synthesized a new series of arylpiperazines 2-8 which exhibit high 5-HT(1A)R affinity and selectivity over alpha(1)-adrenergic receptors. Among them, compound CSP-2503 (4) has been pharmacologically characterized as a 5-HT(1A)R agonist at somatodendritic(More)
Different receptor subtypes mediate the effects produced by serotonin (5-HT) in mammals. Besides their proved anxiolytic action, agonists of the 5-HT1A receptor subtype show prospects as antidepressants or neuroprotective agents in case of ischemia. In order to better define the pharmacological profile and determine the selectivity for the 5-HT receptor(More)
A test series of 32 phenylpiperazines III with affinity for 5-HT1A and alpha1 receptors was subjected to QSAR analysis using artificial neural networks (ANNs), in order to get insight into the structural requirements that are responsible for 5-HT1A/alpha1 selectivity. Good models and predictive power were obtained for 5-HT1A and alpha1 receptors. A(More)
The purpose of this study was to characterize the pharmacological effects of 2-[[4-(o-methoxyphenyl)piperazin-1-yl]methyl]-1,3-dioxoperhydro imidazo[1,5-a]pyridine (B-20991) by using several biochemical and behavioral assays. Results of binding studies showed that B-20991 binds with high affinity to the 5-HT1A receptor (Ki = 31.7 +/- 1.7 nM), moderate(More)
  • 1