Małgorzata Pietraszek

Learn More
Recently, it has been proposed that activation of either metabotropic glutamate receptors e.g. mGlu(5) by positive allosteric modulators or stimulation of mGluR(2/3) receptors by agonists may offer new strategy in schizophrenia treatment. The aim of the present study was to compare the effect of mGlu(5) receptor positive allosteric modulator, ADX47273(More)
Effects on aversive learning of the novel highly selective mGlu5 receptor antagonist [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and mGlu1 receptor antagonist (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM) were tested, after systemic administration, in the passive avoidance (PA) and fear potentiated(More)
Hypoglutamatergic theory of schizophrenia is substantiated by observation that high affinity uncompetitive antagonists of NMDA receptors such as PCP can induce psychotic symptoms in humans. Recently, metabotropic glutamate receptors of the mGluR5 type have also been discussed as possible players in this disease. However, less is known about the potential(More)
Phencyclidine and ketamine (but not other NMDA channel blockers, such as memantine) produce psychotomimetic effects. Since unlike memantine, phencyclidine-like compounds show no significant affinity at 5-HT(3) receptors, we investigated if behavioral effects of ketamine could be reduced by 5HT(3) receptor blockade. Ketamine (3-40 mg/kg) produced ataxia,(More)
It has recently been postulated that disturbances in glutamatergic neurotransmission may contribute to the pathophysiology of schizophrenia. Therefore the aim of the present study was to evaluate the role of glutamate NMDA and group II metabotropic receptors in the antipsychotic drug action. To this aim the influence of some well-known neuroleptics on(More)
Prepulse inhibition is a model in which a weak subthreshold stimulus (prepulse), presented to an individual before a strong stimulus (pulse), inhibits a startle response to the latter. A deficit of prepulse inhibition induced by dopaminomimetics and antagonists of NMDA receptors has been suggested as an animal model of the sensorimotor deficit in(More)
In the present study, we evaluated the effects of subchronic blockade of mGluR5 by 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) on learning, anxiety and levodopa-induced dyskinesia in rats. In addition, we excluded the possibility that subchronic treatment produced pharmacokinetic changes using brain microdialysis. MTEP (5 mg/kg) impaired spatial(More)
Potential antipsychotic effects of a selective non-competitive antagonist of metabotropic glutamate receptor 5 (mGluR5), 2-methyl-6-phenylethynylpyridine (MPEP), was examined in two commonly used screening tests: (1) the hyperactivity induced by an NMDA receptor antagonist phencyclidine (PCP), and (2) the hyperactivity induced by an indirect dopamine(More)
It has been proposed that activation of metabotropic glutamate receptor subtype 2/3 (mGluR2/3) may induce both antipsychotic and anxiolytic effects. The aim of this study was to evaluate further the effect of the mGluR2/3 agonist, LY354740 [(+)-2-aminobicyclo(3.1.0)hexane-2,6-dicarboxylate monohydrate] in animal models relevant to both psychotic and(More)
The purpose of the present study was to compare anxiolytic activity of the metabotropic glutamate receptor 1 (mGlu) antagonist, EMQMCM ((3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate) and the mGlu5 receptor antagonist MTEP ([(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine) and MPEP (2-methyl-6-(phenylethynyl)pyridine) in(More)