Małgorzata Giel-Pietraszuk

Learn More
The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and(More)
We analysed conformational changes of yeast tRNA(Phe) induced by high hydrostatic pressure (HHP) measured by Fourier-transform infrared (FTIR) and fluorescence spectroscopies. High pressure influences RNA conformation without other cofactors, such as metal ions and salts. FTIR spectra of yeast tRNA(Phe) recorded at high hydrostatic pressure up to 13 kbar(More)
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme that catalyzes the site-specific trans-esterification reaction. Using high hydrostatic pressure (HHP) technique we showed that HDV ribozyme catalyzes the reaction of RNA cleavage in the absence of magnesium ions according to mechanism of acidic hydrolysis of esters. HHP induces changes of water(More)
Xenopus transcription factor IIIA (TFIIIA) binds 5S rRNA and the 5S rRNA gene, these interactions being mediated by nine zinc fingers. To determine the contribution of each finger to the binding to 5S rRNA we prepared a series of peptides containing different numbers of zinc fingers and analyzed their interactions with RNA. The topography of these complexes(More)
Formation and stabilization of RNA structure in the cell depends on its interaction with solvent and metal ions. High hydrostatic pressure (HHP) is a convenient tool in an analysis of the role of small molecules in the structure stabilization of biological macromolecules. Analysis of HHP effect and various concentrations of ions showed that water induce(More)
DNA cytosine methylation catalyzed by DNA methyltransferase 1 (DNMT1) is an epigenetic method of gene expression regulation and development. Changes in methylation pattern lead to carcinogenesis. Inhibition of DNMT1 activity could be a good strategy of safe and efficient epigenetic therapy. In this work, we present a novel group of cytosine analogs as(More)
New data are presented on the interaction of model synthetic peptides containing an arginine-rich region of human immunodeficiency virus (HIV-Tat), with native RNA molecules: tRNA(Phe) of Saccharomyces cerevisiae and 5S rRNA from Lupinus luteus. Both RNA species form complexes with the Tat1 (GRKKRRQRRRA) and Tat2 (GRKKRRQRRRAPQDSQTHQASLSKQPA) peptides, as(More)
6,6″-Dimethyl-2,2':6',2″-terpyridine ligand (L) reacts in equimolar ratio with Ag(I) ions what results in formation of dinuclear double helicates, which differ in terms of framework and complexity in accordance to counterions and solvent applied. Obtained complexes were thoroughly studied in terms of their biological activity, with the positive(More)
Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m(5)Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore,(More)
High hydrostatic pressure (HHP) technique was used to evaluate a mechanism of RNA hydrolysis with RNA. We showed that hammerhead ribozyme specifically cleaves RNA substrate at HHP in the absence of Mg(2+). A deoxyribozyme "10-23" was active in the same conditions. These results pointed out that the hydrolytic activity of nucleic acid depends on proper(More)