Learn More
Although cytokine-induced sickness behavior is now well-established, the mechanisms by which chronic inflammation and depression are linked still remain elusive. Therefore this study aimed to develop a suitable model to identify the neurobiological basis of depressive-like behavior induced by chronic inflammation, independently of sickness behavior. We(More)
Plasma membrane-bound voltage-dependent calcium channels may couple the perception of an initial stimulus to a regulated pathway for calcium influx. The activities of these channels have been shown to be very low and highly unstable but may be recruited by large-predepolarizing pulses, according to a process referred to as recruitment. By combining(More)
Proinflammatory cytokines induce both sickness behavior and depression, but their respective neurobiological correlates are still poorly understood. The aim of the present study was therefore to identify in mice the neural substrates of sickness and depressive-like behavior induced by lipopolysaccharide (LPS, 830 microg/kg, intraperitoneal). LPS-induced(More)
Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior,(More)
Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail(More)
The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity.(More)
Numerous biological assays and pharmacological studies have led to the suggestion that depolarization-activated plasma membrane Ca2+ channels play prominent roles in signal perception and transduction processes during growth and development of higher plants. The recent application of patch-clamp techniques to isolated carrot protoplasts has led to direct(More)
  • 1