Maëlle Pannetier

Learn More
Mutations in the forkhead transcription factor gene FOXL2 are involved in ovarian failure, which occurs in human BPES syndrome. This syndrome presents a sexually dimorphic expression, specific to the ovary in several vertebrates. We cloned the open reading frame of chicken FOXL2 (cFoxL2) and studied cFoxL2 expression in developing gonads and during(More)
Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations(More)
FOXL2 is a putative transcription factor involved in ovarian development and function. Its mutations in humans are responsible for the blepharophimosis syndrome, characterized by eyelid malformations and premature ovarian failure (POF). Here we have performed a comparative sequence analysis of FOXL2 sequences of ten vertebrate species. We demonstrate that(More)
Previous studies have equated FOXL2 as a crucial actor in the ovarian differentiation process in different vertebrate species. Its transcriptional extinction in the polled intersex syndrome (PIS) leads primarily to a drastic decrease of aromatase (CYP19) expression in the first steps of goat ovarian development. In this study, we provide a better(More)
The conditions for sex reversal in vertebrate species have been studied extensively and have highlighted numerous key factors involved in sex differentiation. We review here the history of the development of knowledge, referring to one example of complete female-to-male XX sex reversal associated with a polled phenotype in the goat. The results and(More)
Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may(More)
Imprinted genes are important in development and their allelic expression is mediated by imprinting control regions (ICRs). On their DNA-methylated allele, ICRs are marked by trimethylation at H3 Lys 9 (H3K9me3) and H4 Lys 20 (H4K20me3), similar to pericentric heterochromatin. Here, we investigate which histone methyltransferases control this methylation of(More)
In mammals, the Y-located SRY gene is known to induce testis formation from the indifferent gonad. A related gene, SOX9, also plays a critical role in testis differentiation in mammals, in birds and reptiles. It is now assumed that SRY acts upstream of SOX9 in the sex determination cascade, but the regulatory link which should exist between these two genes(More)
Recent studies highlight the tremendous potential of human embryonic stem (ES) cells and their derivatives as therapeutic tools for degenerative diseases. However, derivation and culture of ES cells can induce epigenetic alterations, which can have long lasting effects on gene expression and phenotype. Research on human and mouse stem cells indicates that(More)