Learn More
Root-knot nematodes (RKN) are obligate biotrophic parasites that settle close to the vascular tissues in roots, where they induce the differentiation of specialized feeding cells and maintain a compatible interaction for 3 to 8 weeks. Transcriptome analyses of the plant response to parasitic infection have shown that plant defenses are strictly controlled(More)
Root-knot nematodes, Meloidogyne spp., are sedentary biotrophic parasites which are able to infest > 2000 plant species. After root invasion they settle sedentarily inside the vascular cylinder and maintain a compatible interaction for up to 8 weeks. Plant cells respond to pathogen attacks by producing reactive oxygen species (ROS). These ROS, in particular(More)
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell(More)
Root-knot nematodes (RKNs) are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors synthesized in the oesophageal glands and injected into the plant tissue through the syringe-like stylet certainly play a(More)
Phenotypic plasticity in response to environmental change is a common phenomenon, yet is poorly understood at the genetic and molecular level. Aphids exhibit a reproductive plasticity whereby seasonal changes result in asexual or sexual reproduction. To investigate the genetic basis of this reproductive plasticity, we assessed the meiosis and cell cycle(More)
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance(More)
Expanding genomic data on plant pathogens open new perspectives for the development of specific and environment friendly pest management strategies based on the inhibition of parasitism genes that are essential for the success of infection. Identifying such genes relies on accurate reverse genetics tools and the screening of pathogen knock-down phenotypes.(More)
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these(More)
  • 1