Learn More
This paper describes the classification of gait patterns among descending stairs, ascending stairs and level walking activities using accelerometers arranged in antero-posterior and vertical direction on the shoulder of a garment. Gait patterns in continuous accelerometer records were classified in two steps. In the first step, direct spatial correlation of(More)
Unique features of body segment kinematics in falls and activities of daily living (ADL) are applied to make automatic detection of a fall in its descending phase, prior to impact, possible. Fall-related injuries can thus be prevented or reduced by deploying fall impact reduction systems, such as an inflatable airbag for hip protection, before the impact.(More)
Distinguishing sideways and backward falls from normal activities of daily living using angular rate sensors (gyroscopes) was explored in this paper. Gyroscopes were secured on a shirt at the positions of sternum (S), front of the waist (FW) and right underarm (RU) to measure angular rate in lateral and sagittal planes of the body during falls and normal(More)
The purpose of this study is to investigate unique features of body segments in fall and activities of daily living (ADL) to make automatic detection of fall in its descending phase before the impact. Thus, fall-related injuries can be prevented or reduced by deploying feedback systems before the impact. In this study, the authors propose the following(More)
In this paper, novel low-energy static and dynamic scheduling algorithms with low computational complexities for heterogeneous multiprocessor systems are proposed. Since battery life of the system plays a critical role in wearable embedded systems, the algorithms are useful for energy consumption reduction in Body Area Network (BAN)-based wearable(More)
  • 1