• Publications
  • Influence
Mixed Hodge modules
Introduction 221 § 1. Relative Monodromy Filtration 227 §2. Mixed Hodge Modules on Complex Spaces (2. a) Vanishing Cycle Functors and Specializations (Divisor Case) 236 (2.b) Extensions over Locally
Modules de Hodge Polarisables
Dans [7], Deligne a introduit la notion de complexe pur, et démontré la stabilité par image directe par morphismes propres (i.e. la version relative de la conjecture de Weil). Cette théorie, combinée
Bernstein–Sato polynomials of arbitrary varieties
We introduce the notion of the Bernstein–Sato polynomial of an arbitrary variety (which is not necessarily reduced nor irreducible) using the theory of V-filtrations of M. Kashiwara and B. Malgrange.
Mixed Hodge complexes on algebraic varieties
Abstract. Using the theory of mixed Hodge Modules, we introduce the notion of mixed Hodge complex on an algebraic variety, and establish the relation between the filtered complex of Du Bois and the
On microlocal b-function
© Bulletin de la S. M. F., 1994, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord
Jumping coefficients and spectrum of a hyperplane arrangement
In an earlier version of this paper written by the second named author, we showed that the jumping coefficients of a hyperplane arrangement depend only on the combinatorial data of the arrangement as
Introduction to mixed Hodge modules
© Société mathématique de France, 1989, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les
Algebraic Gauss-Manin systems and Brieskorn modules
We study the algebraic Gauss-Manin system and the algebraic Brieskorn module associated to a polynomial mapping with isolated singularities. Since the algebraic Gauss-Manin system does not contain
On the structure of Brieskorn lattice
the filtration F on Ox' The right hand side of (*) was first studied J f by Brieskorn [B] and we call it the Brieskorn lattice of M, and denote it by Mo. In fact, he defined the regular singular