• Publications
  • Influence
Galois Theory of Linear Differential Equations
Linear differential equations form the central topic of this volume, Galois theory being the unifying theme. A large number of aspects are presented: algebraic theory especially differential Galois
Galois Theory of Difference Equations
Picard-Vessiot rings.- Algorithms for difference equations.- The inverse problem for difference equations.- The ring S of sequences.- An excursion in positive characteristic.- Difference modules over
Schottky Groups and Mumford Curves
Discontinuous groups.- Mumford curves via automorphic forms.- The geometry of mumford curves.- Totally split curves and universal coverings.- Analytic reductions of algebraic curves.- Jacobian
Moduli spaces for linear differential equations and the Painlevé equations
Une construction systematique des familles isomonodromiques de connections de rang 2 sur la sphere de Riemann est obtenue de l'application analytique de Riemann-Hilbert RH: M → R, ou M est un espace
Rigid analytic geometry and its applications
Preface.- Valued fields and normed spaces.- The projective line.- Affinoid algebras.- Rigid spaces.- Curves and their reductions.- Abelian varieties.- Points of rigid spaces, rigid cohomology.- Etale
The cohomology of Monsky and Washnitzer
The Zeta-function of an algebraic variety over a finite field can be expressed in terms of a Frobenius operator acting on p-adic cohomology groups of this variety. Those cohomology groups, based on
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
  • M. Put
  • Mathematics
    J. Symb. Comput.
  • 1 October 1999
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of
Galois theory of q-difference equations
Soit q un nombre complexe, 0 < |q| < 1. On procede pour l'essentiel a une etude systematique des equations aux q-differences sur le corps K des fonctions meromorphes au voisinage de 0